 Paper 2 Guide (Students)
This paper is a practical programming project. Students should select a problem, the solution to which will enable them to demonstrate the skills required by the syllabus in Section 2.

The programming language used is at the discretion of the candidate and the Centre. CIE suggest that Visual Basic, Pascal, C++ and Java would all be suitable vehicles for the production of the software. However, this list is not exhaustive and if a candidate would like to use another language there should not be a problem. Centres can contact CIE Customer Services to ensure that another language is acceptable before beginning the work.

Candidates are free to select any problem for solution, but should discuss their chosen problem in detail with the staff at the Centre to ensure that the solution will demonstrate their abilities to the full.

Candidates may receive guidance in choosing their problem, but Centres should ensure that work from their candidates is sufficiently different to make them individual pieces of work.

This practical programming project should be completed during the first year of a two year course.

It may be submitted, along with Paper 1, at the end of the first year in order to qualify for the award of AS in Computing, or may be saved and submitted at the end of the two years, in addition to Paper 1, 3 and the project to qualify for the award of A Level Computing. In this way, Centres wishing to enter candidates for Papers 1 and 3 can complete this coursework during the first year of the course. The projects will be marked by Centres and moderated by CIE.

Section 2 – Practical Programming Project (50 marks)

This unit examines knowledge and understanding as well as skills. The programming project is intended to allow candidates to demonstrate their competence in the skills of program design, development, testing and documentation.

The criteria which should be followed when producing their solution are clearly set out in Section 2 of the syllabus. The practical programming project will be marked at the Centre according to the criteria outlined in the section Guidance on Marking the Practical Programming Project, which can be found at the back of this syllabus. The marking criteria will not change from year to year. The marked projects will be externally moderated by CIE. If Centres are uncertain about the appropriateness of a problem they should seek advice from CIE.

SECTION 2: PRACTICAL PROGRAMMING PROJECT

This section is designed to allow candidates to develop the following skills:

program design;

program development;

testing;

implementation.

This section covers basic knowledge and understanding, as well as skills. It is expected that candidates will have studied the requisite theory in order to carry out the project successfully.

The Practical Programming Project is an individual piece of well-documented work involving a problem that can be solved using a computing system. The emphasis is on the solution of problems in a structured way using logic and reason to split a problem into sections that can be programmed using a procedural or object-oriented programming language.

Candidates are free to choose problems/tasks identified by themselves or their teacher.

The choice of problem/task must allow the candidate to demonstrate the following programming skills in one program:

· arrays and/or records

· different data types

· selection

· iteration

· procedures

· functions

· searching techniques

· files

Candidates may solve the same problem or use the same initial scenario for a project but the solution must be developed on an individual basis, no collaborative work is allowed.

Teachers are expected to give educational guidance during the design process but the work submitted must be the candidate’s own. Only the code designed and written by the candidate should be marked by the teacher.

The teacher marks the projects using the marking criteria in the Guidance on Marking Practical Programming Projects section of this syllabus, after which moderation takes place according to CIE procedures.

Candidates should not submit magnetic or optical media as part of their supporting evidence.

2.1 Problem/Task Identification 2 marks
Candidates should be able to describe a problem/task that can be solved by writing a program.

2.1.1 Problem/Task description

Learning outcomes: Candidates should be able to:

(a) describe a problem in terms of inputs, processes and outputs.

2.2 Program Design 6 marks
Content

Candidates should be able to specify and document a design. The design specification may include the method of solving a problem, for example:

2.2.1 Hardware requirements

2.2.2 Input design

2.2.3 Output design

2.2.4 Data structures

2.2.5 Processes
Learning outcomes

Candidates should be able to:

(a) specify the required hardware for a problem/task;

(b) design and document screen layouts;

(c) design and document report layouts, screen displays and/or other forms of output (for example, audio output);

(d) design and document the data structures necessary to model a problem/task;

(e) design and document a process model.

2.3 Program Development 28 marks
Content

2.3.1 Interpreting a design solution

2.3.2 Developing a programmed solution

Learning outcomes

Candidates should be able to:

(a) interpret a given process model;

(b) specify any variables and data structures needed in the solution of a problem;

(c) develop a solution using a programming language;

(d) develop inputs/outputs using the features of the programming language;

(e) make use of the commenting feature of the programming language, meaningful variablenames, indentation and modularity.

2.4 Testing

8 marks

Content

2.4.1 Test strategy

2.4.2 Test data

2.4.3 Testing a programmed solution

Learning outcomes

Candidates should be able to:

(a) identify, develop and document a test strategy for a given problem;

(b) select suitable test data for a given problem;

(c) test a software solution, providing documented evidence that the solution works.

2.5 Implementation 6 marks
Content

2.5.1 Installation instructions

2.5.2 Technical Documentation

Learning outcomes

Candidates should be able to:

(a) prepare basic installation instructions;

(b) prepare basic technical documentation for the software solution.
Detail Marking
GUIDANCE ON MARKING THE PRACTICAL

PROGRAMMING PROJECT (9691/02)

Practical Programming Projects are assessed as follows:

(a) Problem/Task identification [2 marks]

(b) Program Design [6 marks]

(c) Program Development [28 marks]

(d)Testing [8 marks]

(e) Implementation [6 marks]

(a) Problem/Task Identification [Total: 2 marks]

A candidate should not expect the Examiners to be familiar with the problem/task that has been chosen. There should be a brief description of the problem/task and a clear statement of the form of data input should be given together with the required output.

1 Outline of the problem to be solved.

2 Description of the problem to be solved including the data input and the desired output.

(b) Program Design [Total: 6 marks]

A detailed program design (including diagrams as appropriate) should be produced. Proposed record, file and data structures should be described.
Design of input formats (with examples of screen layouts) and output formats should be included here.
 A detailed description of processes should also be included. The hardware requirements must be stated.

1–2 Some vague discussion of what the program will do with a brief diagrammatic representation.

3–4 There is an outline of a design specification, including mock ups of inputs and outputs, process model described (including a diagram: structure diagram, data flow diagram or system flowchart). However there is a lack of completeness with omissions from the process model, inputs and outputs. Data structures have been identified but there may be inadequate detail. Or there may be some errors or logical inconsistencies, for example validation specified may be inadequate or field lengths incorrect.

5–6 A detailed and complete design specification, which is logically correct. There are also detailed written descriptions of any processes/modules and a clear, complete definition of any data structures.

(c) Program Development [Total: 28 marks]

(i) Implementing the program [6 marks]

There is evidence that the program produces the desired results. The finished program should relate clearly to the design work.

1–2 Program listings are provided in the form of printouts. The developed solution does not fulfil the design specification. A teacher may award up to 2 marks if they have been shown the system working satisfactorily and there is no hard evidence in the project report.

3–4 Program listings are provided in the form of printouts. Data structures are illustrated as part of the listings where appropriate, detailing their purpose. The developed solution has logical flaws and is only slightly related to the design.

5–6 Program listings are provided in the form of printouts. Data structures are illustrated as part of the listings where appropriate, detailing their purpose. There is a full set of printouts showing input and output as well as data structures. The program is clearly related to the design. All hardcopy is fully annotated and cross-referenced.

(ii) Using Good Programming Style [6 marks]

Program listings should be easily readable. There should be a ‘header’ identifying the program that contains the program name, author, school or college, programming language used, revision number, date and purpose. The program should be self-documenting.

All data declarations should have explanatory comments; identifiers should have meaningful variable names; programs, functions and procedures should be clearly named, well separated and fully commented; suitable indentation should be used to set out the programming constructs used.

Program listings must contain all the code written by the candidate. If any library routines or automatically generated code is included this must be clearly identified and not taken into account for assessment purposes.

1–2 Program listings are not easily readable and have few comments or comments are handwritten on the listing.

3–4 The program listing shows some attention to good style but not all elements are included.

5–6 The program listing is easily readable and shows considerable attention to good style.

(iii) Programming Skills [16 marks]

Candidates must demonstrate their use of the following programming skills.

· arrays and/or records

· different data types

· selection

· iteration

· procedures

· functions

· searching techniques

· files

For each of the above skills:

1 mark for a valid use

1 mark for correct annotation within the code

(d) Testing [Total: 8 marks]

It is the responsibility of the candidates to produce evidence of their development work and to produce a test plan for the system. It is vital to produce test cases and to show that they work. To do this it is necessary, not only to have test data, but to know what the expected results are with that data.

An attempt should be made to show that all parts of the program have been tested, including those sections dealing with unexpected or invalid data as well as extreme cases. Showing that many other cases of test data are likely to work – by including the outputs that they produce – is another important feature. Evidence of testing is essential. Comments by teachers and others are of value, but the test plan must be supported by evidence in the report of a properly designed testing process. The examiner must be left in no doubt the program actually works. This evidence may be in the form of hardcopy output (possibly including screen dumps), photographs or VHS video.

1–2 A collection of hardcopy test run outputs with no test plan, or a test plan with no hardcopy evidence may also be present. A teacher may award up to 2 marks if they have been shown the program working satisfactorily and there is no hard evidence in the project report.

3–4 There is little evidence of testing with a badly developed test plan with clear

omissions. There is no description of the relationship between the structure of the

development work and the testing in evidence.

5–7 The developed solution partially fulfils the design specification. There should be at least eight different test runs together with a test plan and hardcopy evidence. However, the test plan has omissions in it and/or not all cases have been tested.

8 A comprehensive test plan, with evidence of each test run is present in the report, together with the expected output. The test plan should cover all aspects of the programming designed to cover the topics in c (iii) and demonstrate their effective use within the boundaries of the solution.
(e) Implementation [Total: 6 marks]

(i) Technical Documentation [4 marks]
Much of the documentation will have been produced as a by-product of design and development work and also as part of writing up the report to date. The following should be included: record, file and data structures used; data dictionary; data flow (or navigation paths); annotated program listings; detailed flowcharts; details of the algorithms and formulae used. These should be fully annotated since this is important for subsequent development of the system. The specifications of the hardware and software on which the system was developed should be included.

Since the contents in the technical documentation will differ from one project to another, professional judgement as to what would be necessary for another analyst to maintain and develop the program has to be made.

1–2 Some items are present with some annotation attempted.

3 One or two omissions, but the rest is present and annotation is used sensibly.

4 No major omissions, with all parts fully annotated.
(ii) Installation Instructions [2 marks]
Clear guidance, as friendly as possible, should be given to the user on how to install the program ready for use.

1 Sensible instructions on how to install the program for use.

2 Comprehensive, well illustrated instructions on how to install the program for use

