
LECTURE NOTES

PROGRAMMING WITH
VISUAL BASIC 6.0

CHAPTER 6

“USING LOOPS AND TIMERS”

PREPARED BY

Mazhar javed

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

CHAPTER 6: USING LOOPS AND TIMERS
This chapter describes how to write repeating statements (loops) in program code and how to use the
Timer control to create clocks and other time-related utilities. In this chapter, you will learn how to:

• Write the For…Next Loop statement to run a block of code a set number of times.

• Write the Do… Loop statement to run a block of code until a specific condition is met.

• Use the Timer control to create a digital clock and other special effects.

6.1: Writing FOR….NEXT Loops
With a For...Next loop, you can execute a specific group of program statements in an event
procedure a specific number of times. This can be useful when you want to perform several related
calculations, work with elements on the screen, or process several pieces of user input.

6.1.1:Anatomy of a FOR…NEXT Loop
A For...Next loop is really just a shorthand way of writing out a long list of program statements. Since
each group of statements in the list would do essential ly the same thing, Visual Basic lets you define
a group of statements and request that it be executed as many times as you want.

For...Next Loop Syntax
The syntax for a For...Next loop looks like this:

For variable = start To end
 statements to be repeated
Next variable

In this syntax statement, For, To, and Next are required keywords, and the equal sign (=) is a
required operator. First, you replace variable with the name of a numeric variable that keeps track of
the current loop count. Next, you replace start and end with numeric values that represent the starting
and stopping points for the loop. The line or lines between the For and Next statements are the
instructions that repeat each time the loop executes.

Making a Beeper
For example, the following For...Next loop sounds four beeps in rapid succession from the
computer’s speaker:

For i = 1 To 4
 Beep
Next i

This loop is the functional equivalent of writing the Beep statement four times in a procedure. To the
Visual Basic compiler, the loop looks like this:

Beep
Beep
Beep
Beep

The loop uses the variable i. By convention, i stands for the first integer counter in a For...Next loop.
Each time Visual Basic executes the loop, the counter variable increases by one. (The first time
through the loop, the variable contains a value of 1, the value of start. The last time through, the
variable value is 4, the value of end.) As you’ll see in the following examples, you can use this counter
variable in your loops to great advantage.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

6.1.2:Using the Counter Variable in a Loop
A counter variable is just like any other variable. You can assign counter variables to properties, use them in
calculations, or display them in a program. One of the handiest techniques for displaying a counter
variable is to use the Print method. This method displays output on a form or prints output with an
attached printer. The Print method has the following syntax:

Print expression

where expression is a variable, property, text value, or numeric value in the procedure.

Print Method Counter Variable
For example, you could use the Print method in a For…Next loop to display output on a form:

For i = 1 To 10
 Print "Line"; i
Next i

The Print method displays the word Line, followed by the loop counter, 10 times on the form . The
Print method uses these symbols to separate elements in an expression list:

Symbol Behavior

comma (,) Places the elements one tab field apart.
semicolon (;) Places elements side by side. (Visual Basic displays the counter variable next to the
string with no additional spaces in between.)

If you were to run this program, however, you would probably notice that there is a space between
“Line” and the counter variable. That's because when the Print method prints numeric values, Visual
Basic reserves a space for a minus sign, even if the minus sign isn’t needed.

Note You can use any combination of semicolons and commas to separate expression list elements.

6.1.3:Changing Properties with a Loop
In Visual Basic, you can use loops to change properties and update key variables that:

® Open bitmaps with the Picture property.

® Keep a running total with a variable.
® Change the text size on your form by updating the form's FontSize property.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

The example below shows how a For…Next loop can change the text size on a form by changing the
form's FontSize property. (The FontSize property adjusts the point size of the text on a form. You can use
it as an alternative to changing the point size with the Font property.) In the figure given below, you’ll see
the program run through the loop to create type that seems to grow as the program runs.

In this example program the only command button on the form is programmed as follows:

Private Sub Command1_Click

For I=i To 10
 Print “Line”; i

FontSize=10 + i
Next I

End Sub

When the program runs and whenever the command button Command1 is clicked, the code written in
event procedure writes “Line” statement with a counter variable on the form at a special order. Please see
the code and observe the function of For Loop.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

6.1.4:Complex FOR…NEXT Loops
Using counter variables in a For...Next loop can be a powerful tool in your programs. With a little
imagination, you can use counter variables to create several useful sequences of numbers in your
loops.

Creating Loops with a Custom Counter
You can create a loop with a counter pattern other than 1, 2, 3, 4, and so on. First, you specify a
different start value in the loop. Then, you use the Step keyword to increment the counter at different
intervals. For example, this loop controls the print sequence of numbers on a form:

For i = 5 To 25 Step 5
 Print i
Next i

The program prints this sequence of numbers:

5
10
15
20
25

Specifying Decimal Values
You can also specify decimal values in a loop. For example, here's another For...Next loop that
controls the print sequence of numbers on a form:

For i = 1 To 2.5 Step 0.5
 Print i
Next i

The program prints this sequence of numbers:

1
1.5
2
2.5

Nested For...Next Loops
You can also place one For…Next loop inside another to create really interesting effects. If you try
this, be sure you use a different counter variable for each loop, such as i for the first, and j for the
second.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

6.1.5:Using the EXIT FOR Statement
Finally, you may wish to know how to leave a loop early if the need arises. In Visual Basic, you can
use an Exit For statement to exit a For...Next loop before the loop has finished executing. With this
capability, you can respond to specific events that occur before the loop runs the pres et number of
times.

For example, in this For...Next loop, the loop prompts the user for 10 names and prints them on the
form, unless the user enters the word Done. (If the user does enter Done, the program jumps to the
first statement that follows the Next statement):

For i = 1 To 10
 InpName = InputBox("Type a name or Done to quit.")
 If InpName = "Done" Then Exit For
 Print InpName
Next i

As this example shows, you can use If statements with Exit For statements. You’ll find this
combination useful for handling special cases that come up in a loop, and you'll probably use it often.

6.2: Writing Do Loops
Do loops are valuable because occasionally you can’t know in advance how many times a loop
should repeat. As an alternative to a For...Next loop, you can write a Do loop that executes
statements until a certain condition in the loop is true.

For example, you might want to let the user enter names in a database until the user types Done in
an input box. In that case, you could use a Do loop to cycle indefinitely until the user enters the text
string, Done.

6.2.1: Anatomy of a Do Loop
A Do loop has several formats, which depend on where and how Visual Basic evaluates the loop
condition.

A Standard Do Loop
The most common Do loop syntax looks like this:

Do While condition
 block of statements to be executed
Loop

For example, this Do loop consists of statements that process input until the user enters the word
Done:

Do While InpName <> "Done"
 InpName = InputBox("Type a name or Done to quit.")
 If InpName <> "Done" Then Print InpName
Loop

The conditional statement in this loop is InpName <> "Done". The Visual Basic compiler translates
this statement to mean “loop as long as the InpName variable doesn’t contain the word "Done.”

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Note This code brings up an interesting fact about Do loops: if the condition at the top of the loop is
not True when the Do statement is first evaluated, Visual Basic never executes the Do loop.
Suppose, that the InpName variable did contain the text string “Done” before the loop started
(perhaps from an earlier assignment in the event procedure). Visual Basic would skip the loop
altogether and continue with the line below the Loop keyword.
Also, note that this type of loop requires an extra If...Then structure to prevent the exit value from
being displayed when the user types it.

Conditional Test at the Bottom of the Loop

If you want the loop to always run at least once in a program, put the conditional test at the bottom of
the loop. For example, this loop is essentially the same as the Do loop shown above, but the loop
condition is tested after a name is received from the InputBox function:

Do
 InpName = InputBox("Type a name or Done to quit.")
 If InpName <> "Done" Then Print InpName
Loop While InpName <> "Done"

The advantage of this syntax is that you can update the InpName variable before the conditional test
in the loop. This syntax prevents a preexisting “Done” value causing the loop to be skipped. Testing
the loop condition at the bottom ensures that your loop will be executed at least once, but often, you’ll
need to add a few extra statements to process the data.

6.2.2: Avoiding an Endless Loop
Do loops are relentless, so it is very important that you design test conditions carefully. Each loop must have a
True exit point. If a loop test never evaluates to False , the loop will execute endlessly, and your
program will no longer respond to input.

Consider the following example:

Do
 Number = InputBox("Enter number to square, or -1 to quit.")
 Number = Number * Number
 Print Number
Loop While Number >= 0

In this loop, the user enters number after number, and the program squares each number and prints it
on the form. Unfortunately, when the user has had enough, he or she can’t quit because the
advertised exit condition doesn’t work.

When the user enters −1, the program squares it, and the Number variable is assigned the value 1.
(You can fix this logic error by setting a different exit condition.)

It's a good thing to watch for endless Do loops. Fortunately, faulty exit conditions are pretty
easy to spot if you test your program thoroughly.

6.2.3: Using the Until Keyword
So far, the Do loops you have seen use the While keyword to execute statements as long as the loop
condition remained True . In Visual Basic, you can also use the Until keyword in Do loops to cycle
until a certain condition is true.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Testing a Condition
To test a condition, you can use the Until keyword at the top or bottom of a Do loop, just as you use
the While keyword. For example, the following Do loop uses the Until keyword to loop repeatedly
until the user enters the word Done in an input box:

Do
 InpName = InputBox("Type a name or Done to quit.")
 If InpName <> "Done" Then Print InpName
Loop Until InpName = "Done"

Test Condition Operators

As you can see, a loop that uses the Until keyword is very similar to a loop that uses the While
keyword. In our example, the only difference is that the test condition usually contains the equal to
operator (=) versus the not-equal-to operator (<>).

If using the Until keyword makes sense to you, feel free to use it with test conditions in your Do
loops.

6.3: Using the Timer Control

To execute a group of statements for a specified period of time, you can use the Timer control in the
Visual Basic toolbox. The Timer control is an invisible stopwatch that gives your programs access to
the system clock. You can use the Timer to:

® Count down from a preset time, like an egg timer.

® Delay a program.

® Repeat an action at prescribed intervals.

Objects that you create with the Visual Basic Timer:

® Are accurate to 1 millisecond (1/1000 of a second).
® Aren’t visible at run time.

® Are associated with an event procedure that runs whenever the preset timer interval elapses.

Setting the Timer Interval
To set a timer interval, you start by using the timer Interval property. Then, you activate the timer by setting the
timer Enabled property to True . When a timer is enabled, it runs constantly. The program executes
the timer event procedure at the prescribed interval — until the user stops the program, the timer is
disabled, or the Interval property is set to 0.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

6.3.1: EXAMPLE: Creating a Digital Clock

A digital clock is one of the most practical uses for a timer. In this example we’ll create a digital clock
using a timer and a simple label object on a form step by step.

Step1: Creating The User Interface

Open a new project and place a timer object on your form. Then locate a label at the center of the
form and adjust the size as shown in the figure below. For such a program a better look will be
established by sizing your form as a pop up window.

Figure 1: Form with controls

Step2: Setting the Properties

Set the properties of each object as follows,

Form

Caption Digital Clock

Timer

Interval 1000

Enabled True

Label

Alignment 2-Center

Caption “ “ (Optional)

Font Arial, 20 pts, Bold

Step3: Adding Code

We’ll write our VB code to the Timer’s timer event since the timer is the main object that leads the
execution.

Then add the code given below to the Timer,

Private Sub Timer1_Timer

Label1.Caption = Time

End Sub

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Step4: Running The Program

As the program is started, we can see that the timer runs the code written before with the interval of
every 1000 miliseconds (1 Sec). So it updates the label1.caption with the system time at every
second. Your program looks like the one given in the figure below.

Figure 2: Digital Clock Program

In this example of a digital clock, setting the timer Interval property to 1000 directs Visual Basic to
update the clock time every 1000 milliseconds (once per second).

Note The Windows operating system is a multi-tasking environment, so other programs will also
require processing time. Visual Basic might not always get a chance to update the clock each second,
but if it gets behind, it will always catch up. To keep track of the time at other intervals (such as once
every tenth of a second), simply adjust the number in the Interval property.

6.3.2: Setting a Time Limit for Input
There's another interesting way to use a timer: to wait for a set period of time and then to either enable or prohibit
an action. This is a little like setting an egg timer in your program — you set the Interval property with
the delay you want, and then you start the clock ticking by setting the Enabled property to True.

This procedure shows you how to set a time limit for input in a program. In the lab exercises at the
end of this chapter, you'll adapt these steps to create a password protection program that times out if
the user takes more than 15 seconds to enter a password.

 u To set a user input time limit
 1. Create a Timer object on your form.

 2. Set the Interval property of the Timer object to the user input time limit.

Be sure to specify the time limit in milliseconds. For example, set the Interval property to 30000 for
a 30-second time limit.

 3. In the Timer object’s Timer event procedure, place statements that print a "time expired"
message and that stop the program. For example:
MsgBox ("Sorry, your time is up.")
End

 u To create an event procedure to manage use r input

 1. At the place you want to begin the timed input interval, type the following program statement to
start the clock:
Timer1.Enabled = True

You can associate the event procedure with a command button, text box, or any other object that
receives input. If you want the clock to start when the form first appears, place the statement in the
Form_Load event procedure.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

 2. To turn off the clock when the user completes the input satisfactorily, use an event procedure
with the following statement:
Timer1.Enabled = False

Without this statement, the timer object event procedure automatically closes the program when
the allotted time expires.

-END OF CHAPTER 6-

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

