

FUNDAMENTALS OF COMPUTING
LECTURE NOTES

PROGRAMMING WITH

VISUAL BASIC 6.0

CHAPTER 5

“CONTROLLING FLOW AND DEBUGGING”

PREPARED BY

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

CHAPTER 5: CONTROLLING FLOW AND DEBUGGING

This chapter describes writing conditional expressions that control the flow of program code, and
tracking down software defects with Visual Basic’s debugging tools. In this chapter, you will learn how
to:

® Understand and use the principles of event-driven programming.

® Use conditional expressions, decision structures, and mathematical operators to control the
order that your program executes commands.

® Find and correct errors in your programs.

5.1: Event Driven Programming
So far, the programs you have written displayed menus, objects, and dialog boxes on the screen and
encouraged users to manipulate screen elements in whatever order they saw fit. These programs put
the user in charge, waited patiently for a response, and then processed the input predictably.

In programming circles, this methodology is known as event-driven programming. You build a program
by creating a group of intelligent objects (objects that know how to respond when the user interacts with
them), and then you process the input by using event procedures associated with the objects.

Older, character-based versions of Basic such as QuickBasic or BASICA lacked visual development
tools and executed code in sequence, from beginning to end. Event-driven programs start with graphical
objects and then place the user in charge. This different approach requires a different development
strategy. In the event-driven model, the programmer’s job is to implement tasks that the user wants to
accomplish.

 Event
 Procedures

5.2: Conditional Expressions
An event -driven program must be ready to respond to almost any operating condition. It’s probably a
safe bet, though, that only a few of the routines in a particular program are actually executed. For
example, a word processing application may always be prepared to generate a sophisticated mailing
list. However, it probably doesn’t actually do so very often. The program code that accomplishes mail
merge tasks sits ready, but unused, until the moment is right.

In Visual Basic programs, you can direct the course (flow) of your program by creating efficient interface
objects and event procedures . However, you can also control which statements and in which order
statements inside the event procedures run. In Visual Basic terminology, this process is called creating
conditional expressions.

Note Expressions that can be evaluated as True or False are also known as Boolean expressions, in
which the True or False result can be assigned to a Boolean variable or property. You can assign

Event? Event processor

Basic
Code

Basic
Code

Basic
Code

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Boolean values to certain object properties, Variant variables, or Boolean variables that have been
created by using the Dim statement and the As Boolean keywords.

5.2.1: Comparison Operators
One of the most useful tools for processing event procedure information is a conditional expression. A
conditional expression is part of a complete program statement that asks a true-or-false question about:

® A property

® A variable
® another piece of data in the program code.

At the heart of every conditional expression is a comparison operator that creates a relationship
between values. Here’s a simple conditional expression:

Price < 100

If the Price variable contains a value that is less than 100, the expression evaluates to True. If Price
contains a value that is greater than or equal to 100, it evaluates to False . You can use the comparison
operators in this table to create conditional expressions:

Comparison Operator Meaning

= Equal to
< > Not equal to
> Greater than
< Less than
> = Greater than or equal to
< = Less than or equal to

This table shows some conditional expressions that include some of the comparison operators. (You’ll
be working with these expressions later in this section.)

Conditional Expression Result

10 < > 20 True (10 is not equal to 20)

Score < 20 True if Score is less than 20; otherwise, False

Score = Label1.Caption True if the Caption property of the Label1 object contains the

same value as the Score variable; otherwise, False

Text1.Text = “Bill” True if the word Bill is in the first text box; otherwise, False

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

5.2.2: If – Then Decision Structures
When you use conditional expressions in a special block of statements known as a decision structure,
you can control the order in which statements are executed. With an If...Then decision structure, your
program can evaluate a condition in the program and take a course of action based on the result.

In Visual Basic, your If...Then decision structures can work with single or multiple conditional
statements.

Single-condition Structures
In its simplest form, an If...Then decision structure is written on a single line:

If condition Then statement

where:
condition is a conditional expression.

statement is a valid Visual Basic program statement.

For example, this is an If...Then decision structure that uses a simple conditional expression:

If Score >= 20 Then Label1.Caption = "You win!"

The decision structure uses the conditional expression, Score >= 20, to determine whether the program
should set the Label1 caption to “You win!” If the Score variable contains a value greater than or equal
to 20, Visual Basic sets the Caption property. Otherwise, it skips the assignment statement and
executes the next line in the event procedure. This sort of comparison always results in a result of True
or False. A conditional expression never results in “Maybe.”

Multiple-condition Structures
Another Visual Basic If...Then decision structure supports several conditional expressions. This decision
structure is a block of statements that can be several lines long — it contains these important keywords:
ElseIf, Else , and End If.

If condition1 Then
 statements executed if condition1 is True
ElseIf condition2 Then
 statements executed if condition1 is False AND condition2 is True
[Additional ElseIf clauses and statements can be placed here]
Else
 statements executed if none of the conditions is True
End If

In the decision structure, Visual Basic evaluates condition1 first. If this conditional expression is True,
the block of statements below it is executed one statement at a time. (You can include one or more
program statements.) If the first condition is not True , Visual Basic evaluates the second conditional
expression (condition2). If the second condition is True, the second block of statements is executed.
(You can add additional ElseIf conditions and statements if you have more conditions to evaluate.)
Finally, if none of the conditional expressions is True , Visual Basic evaluates the statements below the
Else keyword. The whole structure is closed at the bottom with the End If keywords.

This code sample below shows how you could use a multiline If...Then structure to determine the
amount of tax due on a hypothetical progressive tax return. In this decision structure, Visual Basic
performs these steps:

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

If AdjustedIncome <= 24650 Then '15% tax bracket
 TaxDue = AdjustedIncome * 0.15
ElseIf AdjustedIncome <= 59750 Then '28% tax bracket
 TaxDue = 3697 + ((AdjustedIncome - 24650) * 0.28)
ElseIf AdjustedIncome <= 124650 Then '31% tax bracket
 TaxDue = 13525 + ((AdjustedIncome - 59750) * 0.31)
ElseIf AdjustedIncome <= 271050 Then '36% tax bracket
 TaxDue = 33644 + ((AdjustedIncome - 124650) * 0.36)
Else '39.6% tax bracket
 TaxDue = 86348 + ((AdjustedIncome - 271050) * 0.396)
End If

® Tests the variable AdjustedIncome at the first income level.

® Continues to test subsequent income levels until one of the conditional expressions evaluates
to True.

® Determines an income tax for the taxpayer.

This simple decision structure is quite useful. It could be used to compute the tax owed by any taxpayer
in a progressive tax system, such as the one in the United States. (We’re assuming that the tax rates
are complete and up to date and that the value in the AdjustedIncome variable is correct.) If the tax
rates change, it’s a simple matter to update the conditional expressions.

Important! The order of the conditional expressions in your If...Then and ElseIf clauses is critical. For
example, reverse the order of the conditional expressions in the tax computation example. If you listed
rates in the structure from highest to lowest, this is what happens:

® Taxpayers in the 15 percent, 28 percent, and 31 percent tax brackets would be placed in the 36
percent tax bracket. (That’s because they all would have an income that is less than or equal to
250,000.)
® Visual Basic would stop at the first conditional expression that is True , even if the others are
also True .

All of the conditional expressions in this example test the same variable, so they need to be listed in
ascending order to get the taxpayers to fall out at the right spots. Moral: When you use more than one
conditional expression, watch their order carefully.

Logical Operators
In Visual Basic, if you include more than one selection criterion in your decision structure, you can test
more than one conditional expression in your If...Then and ElseIf decision structures. Visual Basic links
the extra conditions by using one or more of the operators shown in this table:

Logical Operator Meaning

And If both conditional expressions are True, then the result is True.

Or If either conditional expression is True, then the result is True.

Not If the conditional expression is False, then the result is True. If the conditional

expression is True, then the result is False.

Xor If one and only one of the conditional expressions is True, then the result is True.
If both are True or both are False, then the result is False.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Note When expressions contain mixed operator types, your program evaluates operators in this order:

® Mathematical operators.
® Comparison operators.

® Logical operators.

Logical Operators at Work

This table lists some examples of logical operators at work. In the expressions, it is assumed that the
variable Vehicle contains a value of “Bike” and that the variable Price contains a value of 200.

Logical expression Result

Vehicle = “Bike” And Price < 300 True (both expressions are True)

Vehicle = “Car” Or Price < 500 True (second condition is True)

Not Price < 100 True (condition is False)

Vehicle = “Bike” Xor Price < 300 False (both conditions are True)

5.2.3: Select Case Decision Structure
In Visual Basic, Select Case decision structure is another way to control the execution of statements in
your programs. A Select Case structure is similar to an If...Then structure. However, when the
branching depends on one key variable (test case), a Select Case decision structure is more efficient.
This efficiency can make your program code more readable and efficient.

Creating Select Case Structures
A Select Case structure begins with the Select Case keywords and ends with the End Select
keywords.

This sample code below contains the syntax for a Select Case decision structure.

Select Case variable
Case value1
 statements executed if value1 matches variable
Case value2
 statements executed if value2 matches variable
Case value3
 statements executed if value3 matches variable
.
.
.
End Select

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

 u To create a Select Case decision structure

 1. Replace variable with the variable, property, or other expression that is to be the structure’s key
value (test case).

 2. Replace value1, value2, and value3 with numbers, strings, or other values related to the test
case.

If one of the values matches the variable, the statements below its Case clause are executed and Visual
Basic continues executing program code after the End Select statement.

 3. Include any number of Case clauses in a Select Case. If you list multiple values after a case,
separate them with commas.

This example shows how you could use a Select Case structure to print an appropriate message about
a person’s age in a program. If the Age variable matches one of the Case values, an appropriate
message is displayed by using a label. See the code below.

Select Case Age
Case 16
 Label1.Caption = "You can drive now!"
Case 18
 Label1.Caption = "You can vote now!"
Case 21
 Label1.Caption = "You can drink wine with your meals."
Case 65
 Label1.Caption = "Time to retire and have fun!"
End Select

Using a Case Else Clause
A Select Case structure also supports a Case Else clause that displays a message if none of the earlier
cases matches. This program code, which works with the Age example, illustrates the Case Else
clause. See the example code below.

Select Case Age
Case 16
 Label1.Caption = "You can drive now!"
Case 18
 Label1.Caption = "You can vote now!"
Case 21
 Label1.Caption = "You can drink wine with your meals."
Case 65
 Label1.Caption = "Time to retire and have fun!"
Case Else
 Label1.Caption = "You're a great age! Enjoy it!"
End Select

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Using the Ranges of Test Case Values
Visual Basic lets you use comparison operators to include a range of test values in a Select Case
structure. These are the Visual Basic comparison operators that you can use in your programs:

Comparison Operator Meaning

= Equal to
< > Not equal to
> Greater than
< Less than
> = Greater than or equal to
< = Less than or equal to

The Is and To Keywords
To use the comparison operators, you need to include the I s keyword or the To keyword in the
expression to identify the comparison you’re making. The I s keyword instructs the compiler to compare
the test variable to the expression listed after the I s keyword. The To keyword identifies a range of
values.

Example: Using Is and To
This sample code shows how the decision structure uses Is, To, and several comparison operators to
test the Age variable and to display one of five messages.

Select Case Age
Case Is < 13
 Label1.Caption = "Enjoy your youth!"
Case 13 To 19
 Label1.Caption = "Enjoy your teens!"
Case 21
 Label1.Caption = "You can drink wine with your meals."
Case Is > 100
 Label1.Caption = "Looking good!"
Case Else
 Label1.Caption = "That's a nice age to be."
End Select

If the value of the Age variable is less than 13, the program displays the message, “Enjoy your youth!”
For the ages 13 through 19, the program displays the message, “Enjoy your teens!” and so on.

5.2: Finding and Correcting the Errors

So far, the errors you have encountered in your programs have probably been simple typing mistakes or
syntax errors. But what if you discover a nastier problem in your program — one you can’t find and
correct by a simple review of the objects, properties, and statements in your application? The Visual
Basic development environment contains several tools you can use to track down and fix errors (bugs)
in your programs. These tools won’t stop you from making mistakes, but they often can ease the pain
when you encounter a mistake.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

5.3.1: Three Types of Errors
As you develop Visual Basic programs, three types of errors can produce unwanted results in your
applications. These are described in the following topics:

® Logic errors

® Syntax errors

® Run-time errors

Logic Errors
A logic error is a human error — a programming mistake that makes the program code produce the
wrong results. Most debugging efforts focus on tracking down programmer logic errors.

Consider the following If...Then decision structure, which evaluates two conditional expressions and
then displays one of two messages based on the result:

If Age > 13 And Age < 20 Then
Text2.Text = "You're a teenager."
Else
Text2.Text = "You're not a teenager."
End If

Can you spot the problem with this decision structure? A teenager is a person who is between 13 and
19 years old, inclusive, yet the structure fails to identify the person who is exactly 13. (For this age, the
structure incorrectly displays the message, “You’re not a teenager.”)

This type of mistake is not a syntax error (the statements follow the rules of Visual Basic); it is a mental
mistake, or logic error. The correct decision structure contains a greater than or equal to operator (>=) in
the first comparison after the If...Then statement:

If Age >= 13 And Age < 20 Then

Believe it or not, this type of mistake is the most common problem in Visual Basic programs. It's a
matter of code that works most of the time — but not all of the time — and it's the hardest problem to
track down and fix.

Syntax Errors
A syntax error (compiler error) is a programming mistake that violates the rules of Visual Basic, such as
a misspelled property or keyword. As you type program statements, Visual Basic points out several
types of syntax errors — and you won’t be able to run your program until you fix each one.

Runtime Errors
A run-time error is any error — usually an outside event or an undiscovered syntax error — that forces a
program to stop running. Two examples of conditions that can produce run-time errors are a misspelled
file name in a LoadPicture function and an open floppy drive.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

5.3.2: Fixing Errors
To fix a syntax error, edit the incorrect statement (identified by Visual Basic) in the Code window. To fix
a logic or run-time error, use break mode or the Stop statement to isolate the mistake.

® Using Break Mode

® Using the Stop Statement

Using Break Mode
One way to identify an error is to execute your program code one line at a time and examine the content
of one or more variables or properties as it changes. To do this, you can enter break mode while your
program runs and view your code in the Code window.

Break mode gives you a close-up look at your program while the Visual Basic compiler runs it. It’s like
pulling up a chair behind the pilot and copilot and watching them fly the airplane. But in this case, you
can touch the controls.

Visual Basic Resources for Debugging

While you debug your program, you may also want to open and use these Visual Basic resources:

Resource Function

Debug toolbar Provides tools devoted entirely to tracking do wn errors.

Watches window Displays the contents of critical variables you’re interested in

viewing.

Immediate window Provides a place to enter program statements and see their effect

immediately.

This illustration below shows the Debug toolbar, which you open by clicking Toolbars in the View
menu, and then clicking Debug.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Using the Stop Statement
In Visual Basic, you can place a Stop statement in your code to pause the program and display the
Code window. All you have to know is exactly where in the program code you want to enter break mode
and start debugging.

For example, you could click the Break button to pause the program. Or, you could enter break mode
by inserting a Stop statement at the beginning of the Command1_Click event procedure.

The illustration below shows how the Stop statement method works,

Private Sub Command1_Click()
 Stop 'enter break mode
 Age = Text1.Text

 If Age > 13 And Age < 20 Then
 Text2.Text = "You're a teenager."
 Else
 Text2.Text = "You're not a teenager."
 End If
End Sub

When you run a program that includes a Stop statement, Visual Basic enters break mode as soon as it
hits the Stop statement. While Visual Basic is in break mode, you can use the Code window, the Step
Into button, and the Quick Watch button just as you would if you had entered break mode manually.
Finally, when you finish debugging, just remove the Stop statement.

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

5.4: Exercise 1: Password Validation

1. Start a new project. The idea of this project is to ask the user to input a password. If correct, a

message box appears to validate the user. If incorrect, other options are provided.

2. Place a two command buttons, a label box, and a text box on your form so it looks something like this:

3. Set the properties of the form and each object.

Form1:
 BorderStyle 1-Fixed Single
 Caption Password Validation
 Name frmPassword

Label1:
 Alignment 2-Center
 BorderStyle 1-Fixed Single
 Caption Please Enter Your Password:
 FontSize 10
 FontStyle Bold

Text1:
 FontSize 14
 FontStyle Regular
 Name txtPassword
 PasswordChar *
 Tag [Whatever you choose as a password]
 Text [Blank]

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Command1:
 Caption &Validate
 Default True
 Name cmdValid

Command2:
 Cancel True
 Caption E&xit
 Name cmdExit

Your form should now look like this:

4. Attach the following code to the cmdValid_Click event.

Private Sub cmdValid_Click()
'This procedure checks the input password
Dim Response As Integer
If txtPassword.Text = txtPassword.Tag Then
'If correct, display message box
 MsgBox "You've passed security!", vbOKOnly + vbExclamation, "Access Granted"
Else
'If incorrect, give option to try again
 Response = MsgBox("Incorrect password", vbRetryCancel + vbCritical, "Access

Denied")
 If Response = vbRetry Then
 txtPassword.SelStart = 0
 txtPassword.SelLength = Len(txtPassword.Text)
 Else
 End
 End If
End If
txtPassword.SetFocus
End Sub

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

This code checks the input password to see if it matches the stored value. If so, it prints an acceptance
message. If incorrect, it displays a message box to that effect and asks the user if they want to try
again. If Yes (Retry), another try is granted. If No (Cancel), the program is ended. Notice the use of
SelLength and SelStart to highlight an incorrect entry. This allows the user to type right over the
incorrect response.

5. Attach the following code to the Form_Activate event.

Private Sub Form_Activate()
txtPassword.SetFocus
End Sub

6. Attach the following code to the cmdExit_ Click event.

Private Sub cmdExit_Click()
End
End Sub

7. Try running the program. Try both options: input correct password (note it is case sensitive) and

input incorrect password. Save your project.

If you have time, define a constant, TRYMAX = 3, and modify the code to allow the user to have
just TRYMAX attempts to get the correct password. After the final try, inform the user you are
logging him/her off. You’ll also need a variable that counts the number of tries (make it a Static
variable).

5.4: Exercise 2: International Welcome Program

1.Designing the Form
In this exercise, you will open a new project and build a form containing four label objects, a list box
object, and a command button. You’ll also set a few important properties.

 u To create objects on the form

 1. Start Visual Basic and open a new, standard Visual Basic application.
 2. In the toolbox, click Label, and then create a large box in the top middle of the form to
display a title for the program.
 3. In the toolbox, click ListBox, and then create a list box on the left side of the form.

 4. Above the list box, create a small label. To display program output, create two small
labels on the right side of the screen.
 5. In the toolbox, click CommandButton, and then create a small command button in the
bottom middle of the form.

6. Open the Properties window, and then set these object properties on the form:

Object Property Setting

Label1 Caption “International Welcome Program”

 Font Times New Roman, Bold, 14-point

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Label2 Caption “Choose a country”

Label3 Caption (Empty)

Label4 Caption (Empty)

 BorderStyle 1 - Fixed Single

 ForeColor Medium red (&H00000080&)

Command1Caption “Quit”

Note The word (Empty) in the table means remove all text from the indicated property setting.

7. From the File menu, click Save Project As, and then save your form and project to
disk under the name MyLab5. You will be prompted for two file names — one for your form file
(MyLab5.frm) and one for your project file (MyLab5.vbp).

2.Using the Select Case

In this exercise, you:

® Write an event procedure that uses the Select Case decision structure to process the items in
the list box.

® Fill the list box by using the List1 object’s AddItem method in the Form_Load event procedure.

 u To write the code

 1. Double-click the form (not an object, but the form itself).

The Form_Load event procedure appears in the Code window.

 2. To initialize the list box, type the following program code:
List1.AddItem "England"
List1.AddItem "Germany"
List1.AddItem "Spain"
List1.AddItem "Italy"

These lines of code use the AddItem method of the list box object to add entries to the list box on your
form.

3. Open the Object drop-down list box, and then click the List1 object in the list box. The
List1_Click event procedure appears in the Code window.

4. To process the list box selection with Select Case, type these lines of program code:

Label3.Caption = List1.Text
Select Case List1.ListIndex
Case 0
 Label4.Caption = "Hello, programmer"

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

Case 1
 Label4.Caption = "Hallo, programmierer"
Case 2
 Label4.Caption = "Hola, programador"
Case 3
 Label4.Caption = "Ciao, programmatori"
End Select

The first statement in this block of code copies the name of the selected list box item to the caption of
the third label on the form. The most important property used in the statement is List1.Text, which
contains the exact text of the item selected in the list box. The remaining statements are part of the
Select Case decision structure. The structure uses the ListIndex property of the list box object as a test
case variable and compares it to several values. The ListIndex property always contains the number of
the item selected in the list box; the item at the top is 0 (zero), the second item is 1, the third item is 2,
and so on. Using ListIndex, the Select Case structure can quickly identify the user’s choice and display
the correct greeting on the form.

 5. Open the Object drop-down list box.
 6. In the list box, click the Command1 object.

 7. In the event procedure, type End, and then close the Code window.

 8. To save your program to disk, click Save Project.

3.Testing the Program
In this exercise, you run the program and verify that each message contains accurate information. If it
doesn’t, you use the debugging tools to find the problem.

 u To test the program

 1. To run the program, click Start on the toolbar.

Visual Basic loads the program and displays your opening form.
 2. Click each of the country names in the Choose A Country list box.

The program should display a greeting for each of the countries listed, and the name of the country
should appear above the greeting.

 3. If you notice a bug in the program, or if you want to watch Visual Basic run the program code:
� Click Break to enter break mode.

� Run the program one statement at a time by displaying the Debug toolbar and clicking Step
Into repeatedly.

8. When you’re finished testing the program, click Quit to exit.

-END OF CHAPTER 5-

For Evaluation Only.
Copyright (c) by Foxit Software Company, 2004 - 2007
Edited by Foxit PDF Editor

